

Year 11 Knowledge Organiser

Knowledge is Power

Contents Page

Subject	Page
English	1
Maths	3
Science	4
History	16
Geography	18
Spanish	21
Performing Arts	22
PE	23
Business	27
iMedia	29
Cooking and Nutrition	31
Art	32
Graphic Design	33
Music	34

English

Week I	- Love's Philosophy by Percy Shelley	Week 2	- Porphyria's Lover by Robert Browning	Week	3 – Sonnet 29 by Elizabeth Browning
Summary	The speaker in Love's Philosophy is trying to persuade a young woman to be with him romantically, kiss him, and give in to her desires.	Summary	Summary Porphyria's Lover is written as a dramatic monologue from the perspective of the male lover. The monologue is of a fatal meeting between him and his lover. Eventually the		The speaker tells her lover how much she thinks of him, loves him and how much she wants him to be by her side. She uses an extended metaphor of a tree to present her facilings
Quotes	 'The fountains mingle with the river/And the rivers with the ocean' 'What is all this sweet work worth/If thou kiss not me?' 'Nothing in the world is single,/All things by a law divine.' 	Quotes	 speaker strangles his lover with her own han as a way to claim and own her. 'it tore the elm-tops down for spite and did its worst to vex the lake' 'no pain felt she I am quite sure she felt no pain.' 	Quotes	 'I think of thee! – my thoughts do twine and bud' Rustle thy boughs and set they trunk all bare' I will not have my thoughts instead of
Structure	• The poem is comprised of two stanzas, both regular in rhyme.		• 'And yet God has not said a word!'	Structuro	thee/Who art dearer, better!'
	 Both stanzas start with examples to persuade the woman and finish with a rhetorical question. The poem uses simple language, common in romanticism. Each stanza is a long sentence, punctuated with colons and semi colons, giving a childish tone which reflects the speaker's persistence. 	Structure	 The poem is written in a single stanza as a dramatic monologue. The characters are mirrored at the beginning and end of the poem. At the start, the man is still and calm, whilst the woman isn't. This then switches at the end when the woman is dead. 	Structure	 The poem is a retrarchan somet, a highly controlled form. Although controlled, Browning manipulates it to create a tone of excitement and impatience. The volta (turning point) appears earlier than usual, emphasising the speaker's desire to be with her lover.
Context	Shelley was a romantic poet, using natural imagery in a lot of his poetry to explore both romance and the relationship between man and nature. Although known for scandalous relationships, Shelley is best known for his marriage to Mary Shelley, the poet of Frankenstein. Shelley died at the age of 29, by drowning.	Context	Browning was married to Elizabeth Barrett Browning (Sonnet 29), and was a well known Victorian poet. He was most famous for his dramatic monologues, often having a dark tone in them. This poem was part of a two poem collection called 'Madhouse Cells', with the second poem also having a disturbed male narrator.	Context	Barrett Browning grew up with a controlling father who refused to let any of his daughters marry. She became a successful poet, and eventually entered into a secret relationship with Robert Browning, who she later married. Due to this, she was disinherited by her father.

English

Week	4 – Neutral Tones by Thomas Hardy	Week	5 – Farmer's Bride by Charlotte Mew	Week 6 – Sonnet 29 by Elizabeth Brownin			
Summary	The speaker reminisces about an unpleasant memory. On this day that he and his lover stood by a pond as he recalls how he believed his lover found him boring and had fallen out of love.	Summary	The poem tells the story of a young woman and her unhappy marriage to an older farmer. They have been married for three years, and she is still frightened of him and other men.	Summary	The speaker tells her lover how much she thinks of him, loves him and how much she wants him to be by her side. She uses an extended metaphor of a tree to present her feelings.		
Quotes	 'Few leaves lay on the starving sod' 'The smile on your mouth was the deadest thing' ' Keen lessons that love deceives' 	Quotes	 'Like the shut of a winter's day/Her smile went out' 'Happy enough to chat and play/With birds and rabbits So long as men-folk keep away.' 'The short days shorten and the oaks are brown' 	Quotes	 'I think of thee! - my thoughts do twine and bud' Rustle thy boughs and set they trunk all bare' I will not have my thoughts instead of thee/Who art dearer, better!' 		
Structure	 The poem is written in four regular quatrains, suggesting highly controlled thought as if he thinks of the memory often. t is written in a circular structure, beginning and ending by the pond. The circular structure reflects Hardy's inability to move on from this painful memory. 	Structure	 The poem has irregular stanzas, but a clear rhyme scheme (although the pattern is also irregular). The irregular stanzas reflect the strange relationship between the farmer and his bride. As the structure becomes more and more irregular, it highlights the farmer's inability to control his thoughts and foolings. 	Structure	 The poem is a Petrarchan sonnet, a highly controlled form. Although controlled, Browning manipulates it to create a tone of excitement and impatience. The volta (turning point) appears earlier than usual, emphasising the speaker's desire to be with her lover. 		
Context	Hardy was a Victorian poet and most of his work was autobiographical. A lot of his poems were about his relationships. Influenced by the romantics, a lot of Hardy's poetry was about his first wife Emma, who he became estranged from. However this poem was written about a relationship before his marriage to Emma.	Context	Mew is from the Victorian era and came from a poor family with a lot of mental health illness. Her poems often had a male persona and she was recognised by other great poets for having a clear talent. This poem symbolises the treatment of women in Victorian society, and also the natural world versus the industrial revolution.	Context	Barrett Browning grew up with a controlling father who refused to let any of his daughters marry. She became a successful poet, and eventually entered into a secret relationship with Robert Browning who she later married. Due to this, she was disinherited by her father.		

Maths

Key Word	Definition
Area of Rectangle and Parallelogram	base $ imes$ height
Area of Triangle	$\frac{base \times height}{2}$
Area of Trapezium	$\frac{a+b}{2} \times height$
Area of Circle	$\pi imes radius^2$
Circumference	$\pi imes$ diameter
Prism	A 3D shape with a constant cross section
Cross section	The shape you get when you cut through an object (front face)
Volume of any prism	Area of cross section $ imes$ depth
Surface area	The total area of the surface of a three-dimensional object.

Parts of a Cir	cle	Key Word	Definition		
Tangent Segmen	rt Arc	Discrete Data	Data that can only take certain values. These values do not have to be whole numbers, but they are fixed values		
Diameter		Continuous Data	Data that can take any value e.g. height, weight, temperature, length.		
Circumference		Grouped Data	Data grouped together into categories (class intervals)		
		Class interval	When data is collected and arranged in a class, and the width of this class is known as the class interval.		
Key Word	Key Word Definition				
Diameter	A straight line that pass	es through the	centre of the circle		
Radius	A straight line from the	centre to the ci	rcumference (half the diameter)		
Tangent	A straight line that touc	hes the circumf	erence at a point		
Segment	The smallest part of a ci	ircle made whe	n it is cut by a chord.		
Chord	A straight connecting two points on a circle's circumference.				
Arc	Part of the circumference.				
Sector	A sector is formed when two radii of the circle meet at both ends of the arc.				
Secant	A straight line that inter	sects a circle in	two points.		

Science - Forces

Section	1: Key term	s						
1 Scalar		A value	with magnitu	de (size) only, e	.q. spe	ed, distance.		
2 Vector		A value	with magnitu	de (size) and dir	ection	, e.g. all forces, displacement, velocity.		
3 Contact	t force	Force b	etween objects	that are touchin	g e.g. 1	friction, air resistance.		
4 Non-co	ntact force	Force b	orce between separate objects e.g. gravitational force, magnetic force.					
5 Weight		The fo	rce of gravity	acting on an obje	ect's n	nass. Measured using a newtonmeter.		
6 Centre	of mass	The sir	ngle point at w	hich the object's	weigt	nt appears to act.		
7 Resulta	int force	A result object.	resultant force is a single force that has the same effect as all the forces acting on an ject.					
8 Work d	one	Work is frictio	done when an n there is a ten	object is moved operature rise.	l throu	igh a distance. When work is done against		
9 Momen	tum (HT)	Moving	objects with m	ass have moment	um. M	omentum is "mass in motion".		
10 Conse momentu	ervation of um (HT)	In a clo mome	sed system, the	e total momentu e event.	m bef	ore an event is equal to the total		
Section 2 Equ	2: Equations uation	s to lea	rn	Symbol equation	Units			
11 We stre	eight = mass x gravitational field ength			W = m g	Weigh Mass · GFS –	t – newtons (N) - kilograms (kg) newtons per kilogram (N/kg)		
12 Wo	ork done = fo	rce x dis	stance	W = F s	Work Force Distan	ork done – joules (J) rce – newtons (N) stance – metres (m)		
13 For	prce = spring constant x extension			F = k e	Force – newtons (N) Spring constant – newtons per metre (N/m) Extension – metres (m)			
14 Dis	tance = spee	ed x time	2	s = v t	Distan Speed Time ·	ce – metres (m) – metres per second (m/s) - seconds (s)		
15 Acc	celeration = \underline{c}	time	<u>n velocity</u> taken	$a = \frac{\Delta v}{t}$	Accele Veloci Time	ration = metres per second squared (m/s ²) ty = metres per second (m/s) = seconds (s)		
26 Res	sultant force	ant force = mass x acceleration		F = m a	Force – newtons (N) Mass – kilograms (kg) Acceleration = metres per second squared (m/s ²)			
L7 Mo (HT)	mentum = m	iass x ve	elocity	ρ = m v	= m v Momentum – kilograms metres per second (kg m Mass – kilograms (kg) Velocity = metres per second (m/s)			
al th		<u>+</u> ,		An arrow	v	Length of arrow =		
on ng	Gravi	ι <u>γ</u>	Earth's	can be us	ed	magnitude of vector		
avitati d stre	exerte around	ed d an	gfs = 9.8N/kg	to show		Direction of arrow =		
iel	je object. Story kg			direction of vector				

to its original length The object has been stretched but does not return to its original length The difference between stretched and unstretched lengths Force = spring constant X extension, F = k X eEPE = $\frac{1}{2}$ X spring constant X (extension)², EPE = $\frac{1}{2}$ ke² **Elastic Potential energy** Energy stored in a stretched spring Limit of proportionality

Beyond this point the spring is permanently deformed

Forces and elasticity

Science - Forces

Forces, acc	eleration and	Newton's	Laws of	motion
-------------	---------------	----------	---------	--------

Section 5a: Motion					Wher	the resu	Itant force on an s	till ohie	ect = 0 the object is	
25 Displacement	The distance an object move quantity.	es and the direction in which	h it occurs. A vector	Newton's	Balanced forces	When		stationar	ту. Ту.	
26 Velocity	The speed of an object in a particular direction .		first Law	Bulanceu jorces	When the r		he resultant force on a moving object = 0, the object is at			
27 Acceleration	The change of an object's spe near the surface of the Eart	ed in a certain amount of tin th its acceleration will be 	ne. If an object is falling 9.8m/s ² .				a constant speed.			
28 Terminal velocity	The maximum speed of a m object (e.g. gravity) is balanc	noving object. Occurs when a ced by frictional forces (e.	the force moving an g. air resistance).	Newton's	Unbalanced forces	Wl	nen the re	esultant force is gro	eater th v down	nan 0, the object
29 Circular motion (HT)	An object moving in a circle is because the direction in whi velocity is a vector quantity th	has constant speed but c ich the object is moving is co nat measures direction and sp	changing velocity. This postantly changing, and peed.	Newton's third Law	Equal and opposite forces	When tv	When two objects interact the forces exerted are equal and in a opposite direction.			ed are equal and in an
Constant speed - st	traight line	Constant speed - horizontal	line		· · · · ·	Force	es and b	oraking		
Accelerating - curve	Irved line upwards Accelerating - straight line with velocity increasing		Frictional f moving object	orces decelerate a tand bring it to rest.	Spee	Speed affects both thinking and Typical r		Typical reaction time = 0.7s		
Decelerating - curve horizontal Stationary - horizon	ed line going towards	ne Decelerating - straight line with velocity decreasing Ne Stationary - horizontal line on x-axis (velocity = 0) Moving backwards - below x-axis		Thinking distance	Distance travelled wi driver reacts	hilst the	ing 1ces	Drivers reaction times	Drinking alcohol, taking	
Cradiant of line can				Braking distance	Distance travelled wh car is stopped by the	nilst the brakes provide the provided to the p		Braking	Weat bra	Weather conditions, worn brakes or tyres, road
Gradient of line can be calculated to give speed Gradient of line can be calculated to give acceleration or deceleration		Stopping distance	Total thinking and k distances	stopp		distances	surface, size of braking force.			
12.	eed \$	Constant speed		HIGHER ONLY			and c v	Work done by	Kinet	tic energy decreases,
stance (km)	Decelerating 20 Accelerating 20 Accelerating 20 Accelerating 20 Accelerating		Inertial mass	How difficult it is to c the velocity of an o	hange bject	Braking a kinetio energy	braking force, reduces kinetic energy	temperature of brakes increases due to frictional forces.	nperature of brakes ases due to frictional forces.	
Accelerating Ac		Inertial mass = force ÷ acceleration				Conservation	of moi	mentum		
		If the mass is large, to change velocity a big force is needed.		When t	When two objects collide, the momentum they have					
32 Distan	ce-time graph	33 Velocity-time graph	I		p = m X v		Dejure	the c	ollision	itani tiley nave ajter
	Common Speeds	Distance	Area under the	Momentum	Momentum = ma velocity	ass X	Clos	ed system = no ex	ternal f	orces acting on it.
walking 1.5 m/s,	running 3 m/s, cyclin	ng 6 m/s travelled	graph shape							

Science – Forces – Triple only

Moments, levers	Moments, levers and gears					
M = F X d						
Moment = force x o	distance					
Moment	Turning effect of a force about a pivot					
Lever	A small force exerted with a long lever applies a large force					
Gears	Increase or decrease the rotational effect of a force					
Principle of moments	In a balanced system, the sum of the clockwise moments = the sum of the anti-clockwise moments					
Momentum	Is a vector					
	Momentum = mass x velocity					
	P = m x v					
	 In a closed system the total momentum before = total momentum after. Air bags, seat belts, crash mats, cycle helmets, cushioned surfaces etc. all work by increasing the time taken to stop therefore reducing the force. 					
Changes in momentum (HT)	Force is applied to stop momentum If momentum changes slowly, the force applied is small so less damage.					
$\mathbf{F} = \mathbf{m} \; \frac{\Delta \mathbf{v}}{\Delta \mathbf{t}}$						
Force as rate of cha	ange of momentum					

The force acting on an object is equal to the rate of change of momentum.

Pressure						
Pressure = Force ÷ A	Pressure = Force ÷ Area					
P = F ÷ A						
Pressure = height X	density X gfs					
Moment	The forces on a system causing an object to rotate					
Fluid	a liquid or a gas.					
Pressure	e The force provided from particles hitting a surface at right angels to it.					
Upthrust	The resultant force from the weight (down) and the pressure of water (up)					
Atmosphere	A thin layer of air around the Earth.					
Pressure in liquids (HT)	 •The deeper underwater you go the higher the pressure. •This is because the liquid is more dense so there are more particles. •This means there are more collisions at 900 so more pressure 					
Upthrust of submerged liquids HT.	 An object in water experiences a greater pressure on the bottom than on the top. This resultant force is UPTHRUST. An object floats if it's weight = upthrust. An object less dense than the liquid displaces a volume of liquid equal to its weight so will FLOAT. An object sinks if weight is more than upthrust 					
The atmosphereThe atmosphere gets less dense with increasing altitude. The number of air particles above a surface decreases as height increases, so pressure decreases with height.						

Scie	ence – Chemical analys	sis		A pure substances is a single	Pure sub	stances melt ar	nd boil at	
Section 1: Key term	A pure substance is a single element or compound , not mixed with any other			element or compound, not mixed with any other	can be us	c temperatures. Heating graphs used to distinguish pure		
1 Pure	substance.			substance.	substances from impure.			
2 Farmulation	A mixture that has been designed as a useful by mixing the components in carefully meas	product. Formulations are made ured quantities. Formulations	1	mpure substances do not melt at spo	ecific temp	peratures		
2 Formulation	include fuels, cleaning agents, paints, med foods.	licines, alloys, fertilisers and	Melting point of	a/	point of an substance			
3 Melting point	The temperature at which a substance turns	from a solid to a liquid.		_ / /				
Section 3: Chroma	atography					_		
8 Chromatography	A method used to separate mixtures into the	neir different chemicals.	Eormulation	A formulation is a mixture that	has been	designed as a u	coful product	
9 Solvent	The chemical that dissolves the sample in o	chromatography.	Formulation	A formulation is a mixture that		uesigned as a u	serui product.	
10 Solvent front	The maximum distance the solvent move	s up the paper.	How are formulation	By mixing chemicals that h	ave a nart	icular nurnose	in careful	
11 Stationary phase	1 Stationary phase The medium (e.g. paper) through which the mobile phase passes in chromatography.			q	quantities.			
12 Mobile phase The solvent (e.g. water) that carries the sample (e.g. ink) in chromatography .			Examples of formulations.	Fuels, cleaning agents, paints, medicines and fertilisers.			ilisers.	
	A value (always less than 1) that shows how far the substance has moved			 Dractical Identifying substances usi	ng			
13 R _f value	compared to the solvent.		<u>dcsc Required Practical-Identifying substances using</u>					
	distance moved by substance		<u>Chromatography</u>				alvant	
Soction 4: Tosting (for Gasas		Explain now paper	Chemicals with a greater affinity to				
Gas	Procedure	Positive Result	chromatography	mobile phase will move a greater d	istance		<u> </u>	
17 Hydrogen	Hold a lit splint at the end of a test tube	Hydrogen burns with a pop noise.	separates mixtures	in a given time Chemicals with a greater affinity to the			<u></u> `	
18 Oxygen	Hold a glowing splint in a test tube of the cas	The splint relights if oxygen is		stationary phase will move a shorte	er	separated		
19 Carbon dioxide	Bubble gas through a solution of	Carbon dioxide causes the		distance in a given time				
20 Chlorine	Place damp litmus paper in the gas. The litmus is bleached white if chlorine is present.		Explain why it is important the base	The base line is drawn in pencil because pencil does not dissolve so it will not			• `	
			line is drawn in	interfere with the results				
		Glowing	pencil			↓_ ↓ ↓		
Pop Pop		opint	Explain why the	The solvent level starts below the h				
		71 /2	column with the	line so the chemicals are not discal	vod into			
		Ovurgan		the set west	ved mto		Solvent	
		gas	below the base line	the solvent				

Science – Chemical analysis

Testing for metal ions

It is possible to test for metal ions using **flame testing**. To carry out a flame test:

- Clean the nichrome wire in hydrochloric acid
- Dip the nichrome wire in the sample
- Place the sample in the flame and observing the colour

Metal Ion	Flame Colour
Sodium, Na+	Yellow
Lithium, Li+	Crimson
Potassium K+	Lilac
Copper, Cu ²⁺	Green
Calcium, Ca²+	Orange-Red

It is also possible to test for metal ions by adding sodium hydroxide solution.

	Metal	Observation		Equation		
	Copper, Cu ²⁺	Blue precipitate		Cu²+(aq) + 20H (aq)→ Cu(OH)2(S)		
	Iron, Fe²+	Green precipitate		Fe²+(aq) + 20H (aq)→ Fe(OH)2(S)		
	Iron, Fe³+	Brown precipitate		Fe³+(aq) + 30H (aq) → Fe(0H)₃(S)		
	Magnesium, Mg	2+ White precipitate		Mg ²⁺ (aq) + 20H ⁻ (aq) → Mg(0H) ₂ (S)		
	Calcium, Ca ²⁺	White precipitate		Ca²+(aq) + 20H [.] (aq) → Ca(0H) ₂ (S)		
	Aluminium, Al ³	 White precipitate – Dissol 	ves	Al³+(aq) + 30H (aq) → Al(0H)₃(S)		
		in excess sodium hydroxi	de			
	Flame emission spectroscopy	An instrumental method used to analyse metal ions.	Th an thi spo the be	e sample solution is put into a flame d the light that is given out is put rough a spectroscope. The output line ectrum, can be analysed to identify e metal ions in the solution. It can also used to measure concentrations.		
Instrumental Metho methods		Methods that rely on machines	Ca coi aco	n be used to identify elements and mpounds. These methods are curate, sensitive and rapid.		

	Testing for	non-metal io	ons	
Non-metal ion	Test		Observation	
Chloride, Cl [.]	Add nitric acid following b	Add nitric acid following by silver nitrate		
Bromide, Br			Cream precipitate	
lodide, l [.]	-		Yellow precipitate	
Sulfate, SO42-	Add dilute acid, followed l chloride	oy barium	White precipitate	
Carbonate, CO₃²-	Add dilute acid		Fizzing, gas produced turns limewater cloudy	
	Instrume	ental Analysis	s	
Describe the advantage	es of instrumental analysis	The adva	antages of instrumental analysis are:	
Describe the disadvanta	ages of instrumental analysis	• Se ne The disad • In • In	ensitive – only a small amount of substan eeds to be used dvantages of instrumental analysis are: nstruments require specialist training nstruments are often very expensive	
Line spectra can be use	d to identify what elements a	re present in	an unknown sample. The unknown has	
be compared against re	eterence spectra to identify wh	nat elements	are present	
If the lines are in the sa then the element is pre	me pattem and positions, sent	lithium cadmium		
e.g. In the mixture to the lithium are present.	he right, both strontium and	strontium		
		mbxture 750	700 650 600 550 500 450 Wavelength (nm)	

Science – Chemical analysis

Flame tests (chem only)					
Element	Colour flames				
Lithium	Crimson				
Sodium	Yellow				
Potassium	Lilac				
Calcium	Orange-red				
Copper	Green				

Metal hydroxides (chem only)					
Sodium hydroxide	Is added to solutions to identify metal ions.				
White precipitates	Aluminium, calcium and magnesium ions form this with sodium hydroxide solution.				
Coloured precipitates	Copper (II) = blue Iron (II) = green Iron (III) = brown				

Carbonates, halides and sulfates (chem only)				
Carbonates	React with dilute acids to form carbon dioxide.			
Halide ions	When in a solution, they produce precipitates with silver nitrate solution in the presence of nitric acid.			
Sulfate ions	When in a solutions they produce a white precipitate with barium chloride solutions in the presence of hydrochloric acid.			

Flame emission spectroscopy					Instrumental me	ethods
Flame emission spectroscopy	An instrumental method used to analyse metal ions.	The sample solution is put into a flame and the light that is given out is put through a spectroscope. The output line spectrum, can be analysed to identify the metal ions in the solution. It can also be used to measure concentrations.		Instrumental methods	Methods that rely on machines	Can be used to identify elements and compounds. These methods are accurate, sensitive and rapid.

Science- Rates

Vak add

Rate of chemical reaction	This can be c measuring the reactant used formed in a	is can be calculated by asuring the quantity of actant used or product ormed in a given time.		ntity of reactant used time taken ntity of product formed time taken	Collision theory	Chemical reactions can only occur when reacting particles collide with each other with sufficient energy.	Increasing the temperature increases the frequency of collisions and makes the collisions more energetic, therefore increasing the rate of reaction.		
Volume/cm ³	Slope of tangent = $\frac{23}{10}$	5 cm ³ 60 s	Quantity	Unit		This is the minimum amount	Increasing the concentration, pressure		
100 - 90 - 80 - 70 -	~ 0. 25 cm ³	42 cm ³ s ⁻¹	Mass	Grams (g)	Activation energy	of energy colliding particles in a reaction need in order to	(gases) and surface area (solids) of reactions increases the frequency of collisions, therefore increasing the rate of reaction		
60 50	j ,	*	Volume	cm ³		react.	therefore increasing the rate of reaction.		
40 - 30 -	60 s	b)			Factors which affect the	rate of reaction			
20-			Rate of	Grams per cm ³ (g/cm ³)	Describe how to increas	e Breaking a substance down	into smaller pieces increases the surface area		
20 40	60 80 100 120	140 Time/s	reaction	(mol/s)	the surface area of a substance				
	A catalyst o	A catalyst changes the rate of a chemical reaction but is not			Explain how increasing t	he As the surface area is increa	As the surface area is increased the rate of reaction increases , because there		
Catalyst	used in the	used in the reaction.		t chown in the word	surface area affects the	are more reactant particles	are more reactant particles exposed so more successful collisions in a given		
	equation	If a catalyst is used in a reaction, it is not snown in the word			rate of reaction	time	time		
					Explain how increasing t	he As the concentration is incre	As the concentration is increased the rate of reaction increases , because the		
Enzymes	These are	biological cataly	ysts.		concentration affects th	e are more reactant particles	in a given volume so more successful collisions in		
How do they	, A catalyst I	provides an alternative pathway with a lower			rate of reaction	a given time	a given time		
work?	activation	activation energy so more		ve the required	Explain now increasing t	he As the temperature is increa	As the temperature is increased the rate of reaction increases, because more		
	activation	activation energy needed for a successful collision			temperature affects the	reactant particles have the	reactant particles have the activation energy needed so more successful		
Measuring the rate of reaction			Define the term (cataluc	t' A catalyst is a chamical which	A catalyst is a chamical which change up the rate of reaction without gettin				
State how to calculate the		Rate of reaction = <u>Change in amount of chemical</u>				L A catalyst is a chemical which	A catalyst is a chemical which speeds up the rate of reaction without getting		
rate of reaction	1	Time taken		Describe the advantage	used up	Dicaduantagor			
Describe what happens		Reactant particles need to collide with enough		and disadvantages of us	ing increase the rate of react	tion often rare metals which can			
during a chemical reaction in		n energy to break the bonds. This is known as the		and disadvantages of us	• do not got used up				
terms of partic	les and	activation ener	rgy. The partic	les will rearrange and		only small amounts are to the second se	expensive • catalyst can become poisoned b		
collisions		form the produ	ucts				impurities in reactants		

Science- Rates

	Į	Changing conditions and equilibrium (HT)						
		The relative amounts of reactants and products at equilibrium depend on the conditions of the reaction.						
R	Le Chatelier's I	Principles	States that we optimize that we optimize the second	vhen a system experiences a dis state.	sturbance (change in condition), it will respond to restore a new			
Reversible reactions	In some chemical reactions, the products can react again to re-form the reactants.	Changing conc	ent. on	If the concer If the concer	ntration of a reactant is increase ntration of a product is decrease	ed, more products will be formed . ed, more reactants will react.		
Representing reversible reactions	A + B 🛁 C + D	Changing tem	perature	If the tempe - Exotherm - Endother	the temperature of a system at equilibrium is increased: Exothermic reaction = products decrease Endothermic reaction = products increase			
	The direction of reversible reactions can be changed by changing	Changing pressure (gaseous reactions)		For a gaseous system at equilibrium: Pressure increase = equilibrium position shifts to side of equation with smaller number of molecules. Pressure decrease = equilibrium position shifts to side of equation with larger number of molecules. 				
The direction	conditions:	Reversible Reactions		The Haber Process : CHEMISTRY ONLY				
	$A + B \rightleftharpoons C + D$ cool	State what is meant by the following symbolThe symbol the reaction reversibleState what isA system in		indicates n is	Write the word and symbol equations for the Haber process	Nitrogen + Hydrogen Ammonia N_2 + $3H_2$ \longrightarrow NH_3		
Equilibrium in	When a reversible reaction occurs in apparatus which prevents the escape of reactants and products,			which no	State the sources of the raw materials used in the Haber	Nitrogen - The atmosphere Hydrogen - Natural gas		
reversible reactions	equilibrium is reached when the forward and reverse reactions occur exactly at the same rate.	meant by the term 'closed system'	meant by the matter enters or lo erm 'closed system'		Explain the conditions which would give the highest yield of ammonia	Decreasing the temperature would cause the position of equilibrium to oppose the change and increase the temperature by favouring the exothermic reaction (forward reaction)		
Energy cha	nges and reversible reactions	Describe the At dynamic equilibrium:		equilibrium:		Increasing the pressure would cause the position of equilibrium to		
If one direction o	 conditions at dynamic equilibrium The concentration of the reactants and products are 		centration of		oppose the change and decrease the pressure by favouring the side with fewer molecules (forward reaction)			
amount of energ			s are	Explain why a low temperature is not used	A low temperature is not used because the rate of reaction would be too slow			
For example: Hydrated copper sulfate		 Constant The rate of the forward and reverse reactions are equal 		during the Haber process Explain why a high pressure is not used during the Haber	A high pressure is not used as it would cost too much money to generate a high pressure			

Science-Atmosphere - Triple

Proportions of gases in the atmosphere				How oxygen increased						
argon	Gas Percentage		Algae and plants	The	These produced the oxygen that is now in the atmosphere, through photosynthesis.carbon dioxide + water \rightarrow glucose + $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 +$			carbon dioxide + water \rightarrow glucose + oxygen 6CO ₂ + 6H ₂ O \rightarrow C ₆ H ₁₂ O ₆ + 6O ₂		
	N N	litrogen	~80%						Over the next billion years plants evolved to	
		Oxygen	~20%	Oxygen in the atmosphere	Fi	rst produced by a	lgae 2.7 billion y	ears ago.	gradually produce more oxygen. This gradually	
nitroge	n	Argon	0.93%							
		Carbon	0.04%			•	How carbon d	ioxide decre	ased	
		dioxide	0.0476	Reducing carbon dioxi	de in	Algae an	d plants	These grad	lually reduced the carbon dioxide levels in the	
-	The Earth's early	y atmosphe	ere	the atmosphere			- [atmospher	e by absorbing it for photosynthesis.	
Volcano activity 1 st Billion years	Billions of years ago there was intense volcanic	This re (mainly formed atmosp vapour	leased gases y CO ₂) that I to early ohere and water that condensed	Formation of sedimen rocks and fossil fue	Formation of sedimentary rocks and fossil fuels		These are made out of the remains of biological matter, formed over millions of years		Remains of biological matter falls to the bottom of oceans. Over millions of years layers of sediment settled on top of them and the huge pressures turned them into coal, oil, natural gas and sedimentary rocks. The sedimentary rocks contain carbon dioxide from the biological matter.	
	activity to form		n the oceans.		The Comp		sition and Evolu	ition of Eart	h's Atmosphere	
Other gases	Released from buildir volcanic atmos eruptions propor		ed, gradually g up in the phere. Small tions of	State which gases were early atmosphere Describe how the level decreased in the Earth's	State which gases were present in the Earth's early atmosphere Describe how the level of water vapour decreased in the Earth's atmosphere		Carbon dioxide NO oxygen The Earth coole to form oceans	Carbon dioxide, water vapour, nitrogen, methane and ammonia. There was NO oxygen The Earth cooled down which allowed the water vapour to cool and condense to form oceans		
		ammoi also pr	oduced.	Describe how the level	Describe how the level of carbon dioxide		Carbon dioxide decreased in the following ways:			
Reducing carbon dioxide in	When the oceans formed,	This for precipi sedime	rmed carbonate tates, forming ents. This d the levels of	decreased in the Earth's	decreased in the Earth's atmosphere		 It dissolved into the oceans It was used to form sedimentary rocks and fossil fuels It was absorbed during photosynthesis carried out by plants and algae 			
the atmosphere	dissolved into it	oxide reduced the levels of into carbon dioxide in the atmosphere.		Describe how the level the Earth's atmosphere	Describe how the level of oxygen increased in the Earth's atmosphere		Algae and plants produced oxygen by photosynthesis			

Science-Atmosphere - Triple

Greenhouse Gases						
State three greenhouse gases	Water vapour, carbon dioxide and methane					
Describe why greenhouse gases are important	Greenhouse gases in the atmosphere maintain temperatures on Earth high enough to support life					
Describe the greenhouse effect in terms of the	Shorter wavelength radiation from the sun passes	s through the Earth's atmosphere. T	he Earth's surface absorbs this radiation . The Earth then emits			
interaction of short and long wavelength	radiation with a longer wavelength. The greenho	use gases absorb the longer wavele	ngth radiation. This causes the Earth to heat up			
radiation with matter						
Describe two human activities that increase the	Burning fossil fuels to produce electricity and fuel	vehicles releases carbon dioxide int	o the atmosphere			
amount of carbon dioxide in the atmosphere.	Deforestation (cutting down trees) reduces the ar	nount of carbon dioxide that gets ab	sorbed			
Describe two human activities that increase the	Decomposing waste in landfill sites produces met	hane gas				
amount of methane in the atmosphere.	Cattle farming as cows release methane	Climate Change				
Common Atmospheric Pollutants and Their So	urces	Describe the relationship between	As the greenhouse gases in the atmosphere increase, the global			
Define the term hydrocarbon	A hydrocarbon is a molecule that contains only carbon	greenhouse gases and global	temperatures have increased			
	and hydrogen atoms .	temperatures				
Describe how carbon monoxide and carbon	When fuel is burnt in a limited supply of oxygen	Explain why some scientists do not	It is very difficult to model the climate fully and there is some			
particles (soot) are produced by burning fuel	incomplete combustion occurs which produces carbon	alobal climate change				
	monoxide and carbon particles	State what is meant by the term	A poor review is when scientific research is studied and			
Describe how sulfur dioxide is produced by burning	Sulfur impurities in the fuel react with oxygen during	state what is meant by the term	appear review is when scientific research is studied and			
fuel	combustion producing sulfur dioxide	Priofly describe four notantial offects	Detential officets of clobal climate change are:			
Describe how nitrogen dioxide is produced by	Nitrogen and oxygen from the air react at high	of global climate change	Potential effects of global climate change are:			
burning fuel	temperatures , from the burning of fuel, to produce	of global climate change.	Rising sea levels as ice caps melt			
	nitrogen dioxide		Increasingly common extreme weather events			
Explain the problems caused by increased amounts	It is a colourless, odourless, toxic gas. It binds to the		Changes to the distribution of wildlife species due to			
of carbon monoxide	haemoglobin in the blood which prevents oxygen from		Changing habitats			
	being carried by red blood cells		Changes in rainfail patterns which could affect areas stability to group group.			
Explain the problems caused by increased amounts	Carbon particles cause global dimming which leads to	Define the term (each on featurint'	to grow crops			
of carbon particles (soot) less sunlight reaching the Earth's surface.		Define the term carbon footprint .	The carbon footprint is the total amount of carbon dioxide and			
	They can also be breathed in and damage cells in lungs		other greenhouse gases emitted over the full life cycle of a product,			
	leading to health problems.		service or event.			
Explain the problems caused by increased amounts	in the problems caused by increased amounts Reacts with oxygen and water in the atmosphere to		ways to reduce carbon footprint are:			
of sulfur dioxide form acid rain		carbon tootprint	Increasing renewable energy sources			
Explain the problems caused by increased amounts	Causes respiratory problems in humans and can cause	1	Iviaking electrical devices more energy efficient			
of nitrogen dioxide	acid rain.		Using carbon capture and storage (CCS) technology			

Science- Using Resc	ources - Triple	Life cycle assessments are carried out to assess the environmental impact of products			
Using Earth's Resources		Life	Cycle Assessment (LCAs) and Recy	cling	
State the term 'finite resource'	Resources that are being used up faster than they can be replaced. There is a limited amount .	<mark>State</mark> Asse	e the four stages of a Life Cycle essment	Extracting & processing raw material	
State the term 'renewable resource'	Resources that can be replaced at the same rate at which they are used up.			 Manufacturing & packaging Use & operation during its lifetime 	
Water Treatment	F			Disposal at the end of its useful life	
Define potable water	Water that is safe to drink, it contains low levels of dissolved substances and microbes.	cons	e what factors that need to be sidered when making a Life Cycle	Source of raw material, energy needed, water needed, pollutants produced	
Define pure water	Only contains water molecules , it does not contain any dissolved substances or microbes.	Asse State	essment e three ways of reducing the use	Reduce, reuse, and recycle	
Describe how potable water is produced from ground water (fresh water)	 The water is <u>filtered</u> through filter beds to remove any solid debris It is then <u>sterilised</u> using chlorine, ozone or ultra violet light to kill any microbes 	(LH)	Alternative Methods of Extractin State the difference between hig & low grade copper ore	hg Metals h High grade ore – High % of copper. Very fast reactions. Involves digging,	
State two ways which potable water is produced by the desalination of salty water (sea water) Describe how potable water is obtained by the distillation of salt water	 Distillation. Reverse Osmosis. Salt water is heated to 100°C, the water evaporates & then condensed forming pure water. The salt is left behind 	racting metals		moving and disposing of large amounts of rock Low grade ore – Low % of copper. Very slow reactions. More	
Describe how potable water is obtained by the reverse osmosis of salt water	Salt water is passed through a semi permeable membrane using pressure . The water molecules pass through the membrane but many of the dissolved substances cannot.	ods of ext	State two ways of extracting copper from low grade ore	Phytomining & Bioleaching	
Describe how sewage and agricultural waste water is treated	 Screening removes large solid particles i.e. grit by passing the sewage through a screen. Sedimentation allows the small solid particles 	tive metho	Describe now phytomining works	metal compounds. The plants are harvested & then burned to produce ash that contains metal compounds	
Screen Coarse Sedimentation Fine Chlorine added and factories	 (sediment) to sink to the bottom of the tank forming sewage sludge while the liquid (effluent) remains above. Aerobic biological treatment of the effluent. This removes organic matter and harmful microbes. Anaerobic digestion of the dried sewage sludge. 	Alternat	Describe how bioleaching works	Bioleaching uses bacteria that feed on copper compounds in low grade ores to produce leachate solutions that contain metal compound	

			AQA GCSE Using resources 2	
Science- Usin	g Resources - Iripie	The Haber Process & the use of NPK Fert	ilisers (CHEM ONLY)	
Using Materials		Write the word and symbol equations	Nitrogen + Hydrogen Ammonia	
Define the term 'corrosion'	Corrosion is the destruction of materials by chemical reactions with	for the Haber process	$N_2 + 3H_2 \rightleftharpoons 2NH_3$	
	substances in the environment	State the sources of the raw materials	Nitrogen - The atmosphere	
State the conditions needed for	Air and water	used in the Haber process	Hydrogen - Natural gas	
ron to rust		State the conditions used in the Haber	Iron catalyst, 450°C, 200atm	
State the word equation for the	Iron + oxygen + water \rightarrow hydrated iron oxide	process		
rusting of iron		Explain why the temperature used in the	A low temperature is would increase the % yield of	
Describe how corrosion can be	Corrosion can be prevented by applying a coat that acts as a barrier,	Haber process is known as compromise	ammonia but the rate of reaction would be too slow	
prevented	such as greasing, painting or electroplating	temperature		
Explain why aluminium does	Aluminium has an oxide coating that protects the metal from further	Explain why the pressure used in the	A high pressure would increase to rate of reaction & %	
not fully corrode	corrosion	Haber process is known as compromise	yield of ammonia but is not used as it would cost too	
State what sacrificial protection	When a reactive coating is used which contains a more reactive metal.	temperature	much money to generate a high pressure & increases the	
	e.g. zinc is used to galvanise iron		risk of explosions.	
Describe how sacrificial	The more reactive metal in the coating reacts with substances in the	Describe how ammonia is collected	The ammonia is cooled and condensed, any unreacted	
protoction works	environment. leaving the less reactive metal unreacted	during the Haber process	hydrogen & nitrogen is recycled	
Define the term allow	A mixture of two or more elements, at least one of which is a metal	State the elements present in NPK	Nitrogen (N), phosphorus (P) & potassium (K)	
State the row materials used to	Sand, sodium carbonato & limostona	State the equations for the reaction of	Ammonia + culphuric acid -> ammonium culphata	
State the raw materials used to	Sand, soulum carbonate & innestone	ammonia with sulfuris acid, phosphoric		
make soda-lime glass		arithonia with summer acid, phosphoric	Ammonia + phosphoric acid \rightarrow ammonium phosphate	
State a property of borosilicate	Sand & boron trioxide. It has a higher melting point than soda-lime			
glass & what it is made from	glass		Ammonia + nitric acid \rightarrow ammonium nitrate	
State how clay ceramics are	By shaping wet clay & then heating in a furnace. They are generally	Explain why phosphate rock cannot be	Phosphate rock cannot be used directly as a fertiliser	
made and the properties clay	hard, but brittle. They are electrical insulators and resistant to	used directly as fertiliser	because it is insoluble in water . However, suitable salts	
ceramics have	chemical attack		can be formed when the rock reacts with acids.	
Describe what a composite is	Composites are made up of two materials which are combined to	State the equations for the reaction of	Phosphate rock + phosphoric acid \rightarrow calcium phosphate	
	improve the properties of the product for a particular use.	phosphate rock with sulfuric acid,	(triple super phosphate)	
Describe the structure of a	They are made up of the reinforcement & the matrix which binds the	phosphoric acid & nitric acid	Phosphate rock + sulfuric acid \rightarrow calcium phosphate +	
composite	reinforcement together, e.g. reinforced concrete		calcium sulfate (single super phosphate)	
Ceramics,	Commercia	Production and uses of		
polymers and The Haber pro	Alloys are useful materials	on NPK fertilisers	Phosphate rock + nitric acid \rightarrow phosphoric acid + ca	
<u>composites</u> The number			nitrate 15	

History

Key People/Groups	Key Events	
Elizabeth I – last Tudor Queen of England. Protestant.	1533 – The English Reformation. Henry creates the Church of England, with himself as its leader.	
Sir William Cecil – was the Secretary of State and person in government Elizabeth was closest to.	25 th January 1533 – Henry marries Anne Boleyn.	
Robert Dudley, Earl of Leicester – one of Elizabeth's favorites at Court. Possible suitor.	7 th September 1533 – Elizabeth is born.	
Henry VIII – Elizabeth's father and previous King of England. He changed the religion of the	1536 – Anne is executed by Henry VIII after being found guilty of treason.	
country from Catholic to Protestant during the English Reformation in 1533. Anne Boleyn – Elizabeth's mother and Henry's second wife. She was beheaded by Henry.	Religious Settlement 1559 – this was a compromise when it came of England's religion designed to be accepted by as many people as possible.	
Mary I (Bloody Mary/Mary Tudor) – Elizabeth's Catholic sister. She was the ruler before	Act of Supremacy 1559 – made Elizabeth supreme governor of the Church of England.	
The Pope – the Head of the Catholic Church and lives in Rome.	Act of Uniformity 1559 – heavy penalties for those who refused to conform to her Church. Failure to go to Church led to a fine of 1 shilling (£6 today) which was two or three days' pay. Royal Injunctions 1559 – set of instructions issued by Sir William Cecil to the clergy. It reinforced the two previous Acts. It included how people should worship God and structure of services.	
Puritans – an extreme form of Protestantism. They want to develop their own Church, under their own leadership.		
Catholics – form of Christianity. Is one of the oldest religions and was England's religion before the Reformation		
Phillip II of Spain – the King of Spain. Was married to Queen Mary I until her death. He proposed	1566 – The Pope issues instructions that Catholics should not attend Church of England services.	
marriage to Enzabeth when she came to the throne. Valued England as an any at hist.	Elizabeth's Excommunication 1570 – Elizabeth was "damned to hell by Pope Pius V.	
Duke of Alba – Spanish noble who led the 10,000 Spanish troops to crush the Dutch Revolt.	The Ridolfi Plot 1571 – Ridolfi tried to gain the support from the Duke of Norfolk, Phillip of	
Thomas Howard Duke of Norfolk – England's most senior nobleman. He was a Protestant. Close	Spain, Mary QOS to overthrow Elizabeth. Mary is put under surveillance and Norfolk is executed (June 1572)	
	The Throckmorton Plot 1583 – Throckmorton is found with letters to Mary, QOS asking for her support in a plot. He was executed. Walsingham moves against Mary.	
Mary, Queen of Scots – she was a Catholic with a strong claim to the English throne. She was Henry VII's great granddaughter, Elizabeth's second cousin. She was Queen of Scotland and her mother was from a very powerful French noble family, the Guise.	The Babington Plot 1586 – Babington sent letters to Mary about a plot for her to become Queen. Were intercepted by Walsingham. Both are executed.	

History

Key Term	Definition
Inherit	To gain possessions after someone has died
Treason	An attempt to kill or overthrow the Monarch or betray the country; punishable by death
Royal Court	The nobles, advisors and others who surrounded the Monarch
Nobility	The earls, dukes, lords and ladies; the most respected members of society; they were given special rights and privileges and owned most of the land
Secretary of State	The leader of the Privy Council; a very powerful position
Militia	A non-professional army raised to fight for a particular cause, e.g. to defeat a rebellion or war
Privy Council	A Monarch's private councillors
Gentry	High social class ranked below the nobility; they might be local JPs or hold similar office
Patronage	Land, titles or power given to ensure an individual's support
Poor Laws	Laws introduced from 1601 to deal with the growing problem of poverty
Succeed	To take over the throne
Exile	Being sent to live in another country that is not your own, especially for political reasons
Роре	The head of the Catholic Church
Mass	A Catholic church service
Monopoly	The exclusive right to trade in a particular product
Ruff	An item of clothing worn around the neck
Patron	Someone who funds the work of an artist or performing group

Geography

Key Term	Definition
Abrasion	Rocks carried along a river wear down the river bed and banks
Alluvium	A sediment deposited by a river when it floods
Attrition	Rocks being carried by the river smash together and break into smaller, smoother and rounder particles
Channel	The main water course
Channel straightening	Removing meanders from a river to make it straighter
Confluence	Where a tributary joins a larger river
Course	The path of the river from its source to mouth
Cross profile	A cross section of a river channel or its valley
Dam	A barrier built across a valley to interrupt river flow
Deposition	Occurs when material being transported by the sea is dropped due to the sea losing energy
Discharge	Quantity of water that passes a given point on a stream or riverbank within a given period of time
Drainage basin	An area of land drained by a river and its tributaries
Embankment	Artificially raised river banks often using concrete walls
Estuary	Tidal mouth of a river where it meets the sea – wide banks of deposited mud are exposed at low tide
Flash flood	A very sudden flood event resulting from a torrential rainstorm
Flood	Where river discharge exceeds river channel capacity and water spills onto the floodplain
Flood relief channel	Artificial channels that are used when a river is close to maximum discharge; they take the pressure off the main channels when floods are likely
Flood risk	The likelihood of a flood event occurring in a certain area
Flood storage areas	Water is deliberately allowed to flood wetlands to reduce the risk of flooding further downstream

Geography

Key Term	Definition	
Flood warnings	Providing reliable advance information about possible flooding	
Floodplain	Relatively flat area forming the valley floor either side of a river channel that is sometimes flooded	
Floodplain zoning	Identifying how a floodplain can be developed for human uses	
Gorge	A narrow steep-sided valley – often formed as a waterfall retreats upstream	
Gradient	The height and angle of a slope	
Hydraulic action	Power of the water eroding the bed and banks of a river	
Hydrograph	A graph which shows the discharge of a river, related to rainfall, over a period of time	
Interlocking spurs	Outcrops of land along the river course in a valley	
Lateral erosion	Erosion of river banks rather than the bed – helps to form the floodplain	
Levee	Raised bank found on either side of a river, formed naturally by regular flooding or built up by people to protect the area against flooding	
Load	Material transported by a river	
Long profile	The gradient of a river, from its source to its mouth	
Meander	A wide bend in a river	
Mouth	The end of a river, usually where a river joins the sea	
Mudflats	Areas of fine sediment deposits which over time can develop in saltmarshes	
Ox-bow lake	An arc-shaped lake on a floodplain formed by a cut-off meander	
Plunge pool	A deep and turbulent area of water where the river 'plunges' over a waterfall	
Pools and riffles	Alternating sequence in the course of a river or stream that carry coarse sediment, where shallow fast-flowing sections are called riffles and deeper slower-moving sections are called pools	
Reservoir	A large natural or artificial lake used as a source of water supply	

Geography

Key Term	Definition
River restoration	Modifying the course of a river to return it to its natural state
Saltation	Hopping movement of pebbles along a river or sea bed
Saltmarshes	Important natural habitats often found in sheltered river estuaries behind spits where there is very little flow of water
Solution	Dissolved rocks and minerals often derived from limestone or chalk
Source	The start of a river
Suspension	Small particles carried in river flow or sea water, i.e. Sands, silts and clays
Thalweg	The course of the fastest flow (velocity) within a river
Time lag	The time in hours between the highest rainfall and the highest (peak) discharge
Traction	Where material is rolled along a river bed or by waves
Transportation	The movement of eroded material
Tributary	A small stream that joins a larger river
Velocity	Rate of the river flow
Vertical erosion	Downward erosion of the river bed
V-shaped valley	Steep-sided valley
Waterfall	A step in the long profile of a river usually formed when a river crosses over a hard (resistant) band of rock
Watershed	The edge of the river basin
Wetlands	Saturated areas of land, often found on river floodplains

Spanish

Spanish	English	Spanish	English	Spanish	English
¿En qué trabajas?	What is your job?	cuidar a los	look after the customers /	Quiero ser	I want to be
Soy / Es	I am / He/She is	clientes/pacientes/ pasajeros	patients/passengers	Trabajo en equipo	I work in a team
Me gustaría ser/trabajar de	I would like to be/work as.	contestar llamadas telefónicas	answer telephone calls	Mis prácticas laborales	My work experience
abogado	a lawyer	enseñar / vigilar a los niños	teach / supervise the children	Hice mis prácticas laborales	I did my work experience in
albañil	bricklayer	hacer entrevistas	do interviews	en	
azafato/a	flight attendant	preparar platos distintos	prepare different dishes	Pasé quince días trabajando	I spent a fortnight working
bombero	a firefighter	reparar coches	repair cars	en	in
comproro/p	waiter / waitross	servir comida y bebida	serve food and drink	El primer/último día yudaba	On the first / last day
. ,		trabajar en un taller / en un	work in a workshop / in a	conocí a / llegué	I met / I arrived
cocinero/a	cook	hospital /en una tienda /a	hospital in a shop / aboard a	Cada día / Todos los días	Each / Every day
contable	accountant	bordo de un avión	plane	cogía el autobús/el metro	I caught the bus/ underground
enfermero/a	nurse	vender ropa de marca	sell designer clothing	empezaba / terminaba a las	I started / finished at
fontanero/a	plumber	¿Qué tipo de persona eres?	What type of person are you?	hacía una variedad de tareas	I did a variety of tasks
funcionario/a	a civil servant	Creo que soy	I think I'm	iba en transporte público	/ I went by public transport
médico/a	doctor	ambicioso/a	Ambitious	Mi iefe/a era	My boss was
periodista	journalist	comprensivo/a	understanding	Mis compañeros eran	My colleagues were
profesor(a)	teacher	creativo/a	creative	Los clientes eran	The customers were
Es un trabajo	lt's a	extrovertido/a	outgoing	El trabajo era duro	The job was hard
con buenas perspectivas	with good prospects	fuerte	strong		Lloarnod lots of now skills
con un buen sueldo	with a good salary	trabajador(a)	hard-working	habilidades	
Tengo que / Suelo	I have to / I tend to	valiente	brave	No aprendí nada nuevo.	I didn't learn anything nev ? '

Performing Arts

Devising

A method of theatre- making in which the script originates from a performing ensemble (team) working collaboratively.

<u>Stimulus</u>

A stimulus is a starting point to generate ideas. It may be a picture, song, poem, short story, object, or even just a word! It is meant to be explored, discussed and used to create an original piece of drama. The final piece of drama does NOT need to resemble any starting stimulus – the stimulus is simply the starting point in order to generate ideas to explore.

The Devising Process

<u>Research</u> - Explore each stimuli, finding out all the fact	
around it.	

<u>Map ideas</u> – Write all your initial ideas on a mind map.

<u>Discuss</u> – Share your ideas with your group and decide on a final idea.

<u>Storyline</u> – Decide on a theme for your story, who is the protagonist?

<u>Structure</u> – How will you structure your piece? Linear, cyclical etc..

Practitioner – What style will chose? What techniques?

<u>Blocking</u> – Begin to piece your ideas together practically.

Rehearse and refine your piece. What changes and

development have you made?

Key Term	Definition	
Thought tracking	The character steps out od the scene to reveal their inner thoughts to the audience	
Physical Theatre	A type of theatre that relies on the use of movement and the body to tell it's stories	
Mime	U Use of movement to tell a story	
Slow motion	Movement performed at a slow pace	
Monologue	A speech given by a single performer on stage	
Still image	A non-moving image	
Freeze frame	A moment of action or scene that has been paused	
Cross cutting	Two scenes taking place on the stage at the same time, each scene stopping to allow the other scene to take place	
Narration	Speaking directly to the audience to give them information	
Proxemics	The use of space to create meaning (levels, directions, distance to other characters/places/props)	
Choral speaking	Speaking as a group	
Transitions	The actions from one scene to another	
Soundscape	dscape Place, time, mood and atmosphere can be created with recorded or live sound using instruments and or the voices of the performers on stage	
	Genre	
Comedy Amusing and	satirical in tone. Usually a cheerful ending. E.g. The Play that Goes Wrong	
Tragedy The main cha	racter often is brought to ruin or suffers sorrow. E.g. DNA	
Naturalism Acting rea	listically. E.g. The Seagull	
Epic Theatre Brecht – Courage and Her Child Physical Theatre Emp dog in the night-time	audiences are reminded they are watching a play, designed to educate. E.g. Mother dren hasises on Dance and Movement as form of expression. E.g. The Curious Incident of the	
Melodrama Exaggerat	ted and over the top acting. E.g. Wuthering Heights	

PE – Respiratory System

Key Term	Definition	Struct
Respiratory System	Is the network of organs and tissues that help you breathe	Trache
Trachea	The airway that leads from the larynx to the bronchi. Also called the windpipe	
Bronchi	The large air passages that lead from the trachea to the lungs	Bronchio
Bronchioles	Are the very small tubes that branch out from the bronchi	
Lung	One of a pair of organs in the chest that supplies the body with oxygen and removes carbon dioxide from the body.	Alveol
Alveoli	Tiny air sacs in the lungs where the exchange of oxygen and carbon dioxide takes place	
Diaphragm	Is located just below the lungs and heart. It contracts continually as you breathe.	Immediate
Diffusion	Is the movement of molecules from an area of high to a low concentration	Heart rate increase
Capillaries	The tiny blood vessels throughout the body that connect arteries and veins	Increased stroke vo
Oxygen	What is moved from your lungs into your blood	Vascular shunting c Increased cardiac o
Carbon dioxide	What is moved from your blood to the lungs	Muscular fatigue
Tidal Volume	The amount of air inhaled and exhaled per breath. Resting value = 500ml	
Vital Capacity	The maximum amount of air exhaled following a maximal breath in.	
Frequency	The number of breaths taken per minute. Resting value – 12-20 breaths	

Structure of the respiratory system

te increases Cardiac hypertrophy & Muscular hypertrophy d stroke volume Increased cardiac output & stroke volume l blood pressure Increased ability to carry oxygen and remove shunting occurs carbon dioxide d cardiac output Increased muscular strength, endurance and power Faster returning of resting heart rate (recovery). Lowered resting heart rate Growth/development of capillaries	Immediate Effects of Exercise	Long Term Effects of Exercise
d stroke volumeIncreased cardiac output & stroke volumed blood pressureIncreased ability to carry oxygen and removeshunting occurscarbon dioxided cardiac outputIncreased muscular strength, endurance andr fatiguepowerFaster returning of resting heart rate (recovery).Lowered resting heart rateGrowth/development of capillaries	ate increases	Cardiac hypertrophy & Muscular hypertrophy
d blood pressureIncreased ability to carry oxygen and remove carbon dioxideshunting occurscarbon dioxided cardiac outputIncreased muscular strength, endurance and powerr fatigueFaster returning of resting heart rate (recovery).Lowered resting heart rateGrowth/development of capillaries	ed stroke volume	Increased cardiac output & stroke volume
shunting occurscarbon dioxided cardiac outputIncreased muscular strength, endurance and powerr fatigueFaster returning of resting heart rate (recovery).Lowered resting heart rateGrowth/development of capillaries	ed blood pressure	Increased ability to carry oxygen and remove
d cardiac output Increased muscular strength, endurance and power Faster returning of resting heart rate (recovery). Lowered resting heart rate Growth/development of capillaries	r shunting occurs	carbon dioxide
r fatigue power Faster returning of resting heart rate (recovery). Lowered resting heart rate Growth/development of capillaries	ed cardiac output	Increased muscular strength, endurance and
Faster returning of resting heart rate (recovery). Lowered resting heart rate Growth/development of capillaries	ar fatigue	power
(recovery). Lowered resting heart rate Growth/development of capillaries		Faster returning of resting heart rate
Lowered resting heart rate Growth/development of capillaries		(recovery).
Growth/development of capillaries		Lowered resting heart rate
		Growth/development of capillaries
Enhanced gaseous exchange		Enhanced gaseous exchange

PE – Skeletal System

Function of the skeleton	Classification of joints
Protection of vital organs	Pivot (neck – atlas and axis)
Muscle attachment	Hinge (elbow and knee)
Joints for movement	Ball and socket (hip and shoulder)
Blood cell production (platelets, red and white)	Condyloid (wrist)
Storage of calcium and phosphorus	
Key Term	Definition
Flexion	Decreasing the angle at a joint (bending)
Extension	Increasing the angle at a joint (straightening)
Adduction	Limbs moving towards the midline of the body
Abduction	Limbs moving away from the midline of the body
Rotation	A twisting/turning action around a joint
Circumduction	A combination of flexion, extension, adduction & abduction
Dorsi-Flexion (ankle joint)	When the toes are turned up to the body
Planter-Flexion (ankle joint)	When the toes are pointed away from the body

PE - Components of blood

Key Term	Definition
Red blood cells	Carry oxygen from the lungs to the working muscles + Removes CO2.
Haemoglobin	A protein that binds and carries oxygen molecules.
White blood cells	Are part of the immune system and fight disease and infection.
Platelets	Blood platelets are formed in the bone marrow and are essential in the clotting of blood. Platelets are the workhorses of the cardiovascular system.
Plasma	Blood plasma is made up of 90% water. It contains a range of substances that aids the circulation between cells and tissues.
Arteries	Carry blood away from the heart, Oxygenated blood (except pulmonary artery) Thick/elastic walls High pressure Small lumen
Veins	Carry blood back to the heart Deoxygenated blood (except pulmonary vein) Thin walls + larger lumen Lower pressure Valves
Capillaries	In the tissue Site of gaseous exchange Very thin walls

Deoxygenated blood = BLUE (Right side)

Oxygenated = RED (Left side)

PE – Muscular System

Key Term	Definition
Muscular system	Works in conjunction with the skeleton to produce movement of the limbs and body
Antagonistic pairs	Muscles are arranged in antagonistic pairs. As one contracts, its partner relaxes
Agonist	The muscle that contracts to produce movement
Antagonist	The muscle that relaxes to allow the movement to occur

Business

Key Term	Definition	Effective recruitment	
Organisational structures	A system that outlines how certain activities are directed in order to achieve the goals of an organisation.	Recruitment	Attracting the right applicants & identifying the most suitable candidates.
Layers	The levels of job roles in the business.		
Hierarchical	Are known as tall organisations because they have lots of layers of management.	Roles	These are different jobs within a business.
Span of control	The number of employees that are managed by a manager.	Responsibilities	The things that someone is required to do in order to fulfil their
Flat structure	Is one with very few levels of management.		role in a business.
Centralised	Means that decisions are made at the 'centre' of the organisation.		There are four main documents used in the recruitment
Decentralised	Opposite of centralised, empowering managers to make decisions at a local level.	Recruitment Documents	process: 1. the person specification. 2. The Job Description. 3. The application form. 4. The CV.
Accountability	Being responsible for something and being held responsible for it & its outcomes.	Person Specification	Outlines the type of person required for a role. Including qualifications, experience & personal attributes.
Jargon	Technical or obscure words or terms used by a particular group		Outlines the duties & responsibilities of the person doing the
Flexible hours	Employees can be asked to work varying hours by being given a zero hours contract .	Job description	job.
Zero hours	Here, the employee does not know how many hours they will work each	Salary band	A particular salary category.
Permanent	An employee is employed on an on-going basis.	Essential Requirements	Things a candidate must have.
Temporary contract	An employee will be employed for a fixed amount of time.	Desirable Requirements	Things that a candidate may not have, but this may be helpful when fulfilling the role.
Freelance contract	A business may ask a freelancer to work with them on a particular project.	Internal Recruitment	When a role is advertised to the business's existing employees.
Freelancer	Someone who is self-employed & contracted by businesses to work for them.	External Recruitment	When a role is advertised to potential applicants both inside & outside the business.
Efficiency	The state or quality of being efficient.	L	

Business

Training and development		Motivation	
Formal training	Is structured training, such as taking a course or gaining a qualification.	Employee Motivation	Will offer better customer service & be more productive in better functioning teams. The reputation of the business will improve.
Informal Training	Less structured, delivered by a colleague & takes place as and when required.	Financial	Focus on giving employees more money, usually by increasing their
Self learning	Occurs when a person teaches themselves something without being supervised by a teacher or tutor.	Remuneration	Refers to the money paid to an employee for working.
Ongoing Training	Training that employees continue to do throughout their time in a role.	Bonuses	An additional amount of money paid to an employee if they achieve a target or high level of performance.
Productivity	The measurement of how much work a business is able to complete. Higher productivity means that employees complete more work.	Commission	An extra amount of money paid to an employee, usually if they make a certain number of sales.
Target setting	Employees will often be set targets to fulfil in a given work period.	Promotion	When an employee is given a more senior role in an organisation.
Performance Reviews	Meetings that managers have with employees to discuss the employee's performance in their role. These meetings may identify suitable training	Fringe benefits	Other benefits offered by a business that financially benefit employees. E.g. a company car, health insurance, gym membership.
Legislation	The laws that a country must comply with.	Non-financial methods	These are non-monetary methods of motivation & focus on developing an employee's role & responsibilities.
Motivation	Reasons for behaving in a particular way. High motivation will increase productivity.	Job rotation	Gives employees the chance to rotate through different jobs on a production line to reduce boredom.
Retain	Keep something or someone also known as retention . (Keeping good staff)	Job enrichment	The process of adding more interesting elements to an employee's role in order to improve their motivation.
Retention rate	(Number of employees who continued to be employed / total number of employees) X 100	Autonomy	Having the independence to make your own decisions.
Retraining	Staff often need training to remember core practices & to update them on new technology.	Job satisfaction	The sense of achievement or fulfilment that an employee gets from their job.

l Media

Key Term	Definition	
Visualisation Diagram	A visual representation of what the final product will look like. It will be represented by an image of the product and annotations of the design.	
Storyboard	A visual representation that shows the flow of scenes that occur in a timeline and the chronological succession of events.	
Mood Board	A collection of sample materials and products created using paper / cards on a notice board or with digital media software.	
Mind Map	A diagrammatic representation used to organise thoughts and idea based on a central idea.	
Script	A piece of written work that can be for a movie, audio, audio- visual product or screenplay showing the spoken words and actions of characters at specific times.	
Test Plan	A document that outlines tests to be carried out on the final product.	
Client	The person or company who has asked for the media product to be made.	
Client Brief	The project brief which is produced for a design team detailing detailed requirements from the client.	
Graphic Designer	A visual communicator who creates concepts by hand or by using specialised graphic design software.	
Target Audience	A particular group at which a product such as a film or advertisement is aimed at.	

Key Term	Definition
Advertising Product	A product made with the intention of selling a product.
Education Product	A product made with the intention of teaching about a subject.
Entertainment Product	A product made with the intention of entertaining the audience.
Copyright	A form of intellectual property law, that protects original works of authorship including literary, dramatic, musical, and artistic works.
Royalties	Means letting a Company use the design rights for usually an unlimited period of time where the Company produces the product and pays a fee to use it.
Watermark	Is a message (usually a logo, stamp, or signature) superimposed onto an image, with a great deal of transparency.
Stock library	The photographer or author of a stock photo makes it available for licensing, meaning you can pay a fee to get the right to use it in your designs legally.
Trademark Symbols	[™] the trademark symbol serves as a warning for infringers and counter-fitters
Trademark Symbols	® The R symbol signifies that the trademark is registered and protected from infringement under the Trademark laws.
Trademark Symbols	© The © symbol stands for copyright and is a reserved right notice concerning any work that can be copyrighted like artwork, photography, videography, books, literary works, etc

l Media		Key Term	Definition
		PNG	PNG is a lossless raster format that stands for Portable Network Graphics. Think of PNGs as the next-generation GIF. This format has
Key Term	Definition		built-in transparency, but can also display higher colour depths
Visual identity	A collection of images that go towards representing the brand.	GIF	GIF is a lossless raster format that stands for Graphics Interchange
Brand	A style you recognise with a product—Colour, name, slogan, font style, logo		Format . Use web animation or small file.
Typography	How your text appears. The style, shape, size and colour of your lettering.		PDF stands for Portable Document Format and is an image format used
Connotations	How a certain word/image makes you feel and what you associate with it.		application, operating system or web browser
House style	Consistent style with all company products. All branded with logo, name etc	PSD	PSD is a proprietary layered image format that stands for Photoshop Document. These are original design files created in Photoshop that ar fully editable with multiple layers and image adjustments
Conventions	Getting the message across to the viewer in as simple way as possible		
Bitmap	Defines a display space and the colour for each pixel or "bit" in the display space	AI	AI is a proprietary vector image format that stands for Adobe Illustrator
Pixels	The very tiny parts that make up the whole image or bitmap	File Compression	File compression is when file sizes are made smaller by computers,
Vector	Rather than a grid of pixels, a vector graphic consists of shapes, curves, lines, and text which together make a picture	Lossless File	Lossless file compression retains data that allows the file to be restored
Scalability	Scaling is a process of modifying or altering the size of objects.	Compression	later to its original quality and condition.
File Format	The format in which the final product will be played which will affect the file size and the way in which it can be accessed.	Lossy File Compression	Lossy file compression loses some data when file sizes are reduced, so it is difficult to restore the file to the original condition if needed.
JPG	JPEG is a lossy raster format that stands for Joint Photographic Experts Group. It is used for online photos and/or artwork , print photos	Layers	Placed on top of each other for effect when using graphics software.
TIFF	TIFF is a lossless raster format that stands for Tagged Image File Format. Because of its extremely high quality, the format is primarily used in	Re-touching	Photo manipulation to change the look
SVG	photography and desktop publishing. You want to create computer generated graphs and diagrams for publishing on the web	Creative Commons	A CC license is used when an author wants to give other people the right to share, use, and build upon a work that the author has create 30

Cooking and Nutrition

Key Term	Definition
Food provenance	The origin of food and ingredients
Organic farms	Farms where animals are well treated and there are strict welfare standards. Crops are grown without using artificial fertilisers, pesticides or herbicides.
Intensive farming	Farms where animals or crops are grown or reared in large quantities. The welfare and growing standards may be basic
Farmed fish	Fish that are raised in large tanks or nets
Hazard	Something that is dangerous and likely to cause damage
Food processing	Any method that is used to turn fresh food into food products
Chilled Food	This refers to any food that requires refrigerating below
Dehydrating Food	When moisture is removed from a food to make a dried product. This prolongs the shelf life of the food.
Food Manufacturing	This is taking an edible raw food product and turning it into a product for human consumption
Creaming	Mixing two ingredients together, normally fat and sugar to make a smooth mixture
Blanching	When vegetables are partially cooked in boiling water for 2-3 minutes. They are then plunged into ice cold water to stop the cooking process.
Reducing	Making a liquid more concentrated by rapidly boiling it in an uncovered pan.
Simmering	Cooking food in a liquid that is just below boiling point where the water is bubbling gently but not boiling
Boiling	Cooking food when the liquid is at boiling point
Stir Frying	Rapidly frying food over high heat while stirring constantly
En papillote	This is when food is placed in a paper bag made from greaseproof or baking paper before being baked in the oven. It is used mostly to cook fish and vegetables.

Art

Key Term	Definition
Art movement	An art movement is a tendency or a style of art with a particularly specified objective and philosophy that is adopted and followed by a group of artists during a specific period. Additionally, It also refers to when a large number of artists that are alive at the same time collectively adopt a certain, uniquely distinguishable form or style of art.
Landscape	Are works of art that feature scenes of nature. This includes mountains, lakes, gardens, rivers, and any scenic view
View point	Is the height from which the viewer and/or painter sees the subject. The viewpoint is crucial as it determines where the horizon line is within the painting
Zooming	Is achieved either optically, using an arrangement of lenses to manipulate the light entering the camera, thus making the subject appear closer
Concept	Is a form of illustration where the main goal is to convey a visual representation of a design, idea, and/or mood for use in films, video games, animation, or comic books
Context	In your drawings and artwork provide visual links that helps us to fully understand what your art is about
Juxtaposed	Means placing two or more things side-by-side, often with the intention of comparing or contrasting the elements.
Theme	A theme in art is the intended purpose or idea in the art work by the artist or the interpreter
Perspective	Is used to represent three-dimensional objects on a two-dimensional surface in a way that looks natural and realistic. Perspective can create an illusion of space and depth on a flat surface
Obscured	Means unclear, unknown, unexplained, dim ,dark ,hidden. Artwork may have unclear or hidden shapes which could obscure the appearance.

Graphic Design

Key Term	Definition
Concept	Is about determining a specific image of how a design will look. It involves the choice of colours and shape
Brand	Refers to a business and marketing concept that helps people identify a particular company, product, or individual
Identity	Visual identity is a preview of your brand. Each part of your design is a clue that tells the viewer what they can expect
Logo	It is a design that is used by an organisation for its letterhead, advertising material, and signs as an emblem by which the organization can easily be recognized, also called logotype
Colour psychology	Is the study of how colours affect people's feelings and emotions
Illustration	Is a drawing (or painting, collage, engraving, photo, etc) that explains something
Art work	Is an aesthetic physical element or artistic creation
Target audience	Is a distinct group of consumers which can be identified as purchasers of a company's product or service
Packaging design	Involves the design and creation of a product's container and how it looks to consumers who might purchase it
Product	Is the item offered for sale. A product can be a service or an item
Design Brief	Is an outline that focuses primarily on the business objectives, outcomes, and results of project design, rather than the actual design itself

Music

Key Term	Definition
Riff	A short, catchy musical phrase
Syncopated	Rhythms that are played off the beat
Pentatonic scale	A musical scale with five notes per octave, commonly 1, 2, 3, 5 and 6 of the major scale
Ostinato	A repeated pattern of notes
Syllabic	Lyrics sung with one syllable of text per musical note
Toto	American rock band
Ascending	Getting higher in pitch
Descending	Getting lower in pitch
David Paich	Lead and backing vocals, synthesiser, piano. Co-wrote the song
Bobby Kimball	Lead and backing vocals
Steve Lukather	Electric guitar and backing vocals
Steve Porcaro	Synthesisers
David Hungate	Bass guitar
Jess Porcaro	Percussion, co-writer of the song
1981	Year the song was recorded
Verse-Chorus form	The structure used in Africa
B major	The tonality in most of the song
A major	The tonality in the chorus
Homophonic	The texture in the song